74th Meeting of the European working group "Multiple Criteria Decision Aiding"

Yverdon-les-Bains, Swisse, October 6-8, 2011

Implementation of Multicriteria Modules in a Geographic Information System

Antonio Boggia University of Perugia, Italy Salvatore Greco University of Catania, Italy Gianluca Massei University of Perugia, Italy

The objective of this study is to present the implementation of five modules in an open source GIS system; four are based on MCDA:

-r.mcda.electre;

- -r.mcda.fuzzy;
- -r.mcda.regime;
- -r.mcda.roughset;
- -r.roughset.

With particular focus on the r.mcda.roughset one, using a case study.

- MCDA modules in Grass GIS
- r.mcda.roughset
- Case Study
- Conclusion

MCDA modules in Grass GIS

8	/grass-addons/raster/mcda - GRASS GIS - Trac - Mozilla Firefox 📃 🗖 🗴					
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory	Eile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp					
🦛 • 🔶 • 🕑 😢 t	nttp	://trac	.osgeo.org/	/grass/browser/grass-addons/raster/mcda 🔻 🕨 💽 - Google	Q	
🔂 it.comp.lang.python 🛛 🗟	it.comp.la	ng.c Go	oogl 👧	comp.lang.python 🔝 GRASS GIS 🛛 SourceForge : saga		
Google		(- Cer	ca 🛛 🔶 🐼 🗸 🎦 🗸 Segnalibrit 🥍 🛱 Traduci 🗸 » 🛛 🥥 Im	npostazioni -	
Search Login Settings Help/Guide About Trac Wiki Timeline Roadmap Browse Source View Tickets Search Last Change Revision Log root / grass-addons / raster / mcda						
Name 🔺	Size	Rev	Age	View revision		
<u>د</u> /			_			
🗀 r.mcda.electre		3381.0	2 days	gianluca: geographics multi-criteria analysis and knowledge discovery		
🗀 r.mcda.fuzzy		3381.0	2 days	gianluca: geographics multi-criteria analysis and knowledge discovery		
🗀 r.mcda.regime		3381.0	2 days	gianluca: geographics multi-criteria analysis and knowledge discovery		
🗀 r.roughset		33825	16 hours	gianluca: geographics multi-criteria analysis and knowledge discovery - GPL li	cense	
GPL.TXT	17.6 kB	33803	2 days	gianluca: geographics multi-criteria analysis and discovery knowledge tools		
🗎 Makefile	190 bytes	33809	2 days	gianluca: geographics multi-criteria analysis and knowledge discovery		
Note: See TracBrowser for help on using the browser.						
			-		rowser.	

GRASS 6.4 svn is a software GIS open source (GPL licence). It is advanced, well known and rich in functionalities (<u>http://grass.osgeo.org</u>).

GRASS " is free Geographic Information System (GIS) software used for geospatial data management and analysis, image processing, graphics/maps production, spatial modelling, and visualization. GRASS is currently used in academic and commercial settings around the world, as well as by many governmental agencies and environmental consulting companies".

It is written in C language and it is possible, thanks to its libraries and GPL licence, to develop new modules.

MCDA-GIS integration models

☑ MCDA-GIS indirect integration: MCDA and GIS models are separate and connected trough an *intermediate connection system*;

☑ **Built-in** MCDA-GIS models: MCDA model is a component integrated in the GIS system, but it is independent from the logical and functional point of view;

☑ **Complete MCDA-GIS integration**: MCDA and GIS systems use the same interface and the same database. The MCDA model is activated inside the GIS software just like any other analysis function.

MCDA modules in Grass GIS

r.mcda.regime

Wulticirtieria decision analysis based on REGIME method						
Required Optional Command output Manual	4 Þ ×					
[multiple] Input geographics criteria in information system:	(criteria, string)					
[multiple] Criteria weight(s) (w1,w2,):	(weight, float)					
regime preference output map: (pr	eference, string)					
Chiudi Eerma Bun Copia	Ajuto					

Enter parameters for r.mcda.regime (those in bold typeface are required)

It is the implementation of the REGIME multicriteria algorithm in GRASS GIS environment. The input required is the list of raster representing the criteria to be assessed in the multicriteria evaluation and the vector of weights to be assigned. Every single cell of the GRASS region is considered as one of the possible alternatives to evaluate and it is described with the value assumed for the same cell by the raster used as criteria.

MCDA modules in Grass GIS

r.mcda.fuzzy

🄹 r.	mcda. fuzz	y [rastor, fuzzy,	MCDA]			
Wulticirtieria 🖗	Wulticirtieria decision analysis based on Yager fuzzy method					
Required	Optional	Command outpu	ıt Manual	4 Þ 🗙		
[multiple] Input g	eographics ci	riteria in evaluation	table:	(criteria, string)		
[multiple] Linguist	tic modifier (v	v1,w2,):		(weight, float)		
Intersection outpu	ut map:		~	(AND, string)		
Union output map	p:			(OR, string)		
OWA output map:			~	(OWA, string)		
Chiudi	Eerma	Bun	<u>E</u> opia	Aiuto		
Enter parameters	for r.mcda.f	uzzy (those in bold	typeface are re	quired)		

It is the implementation of the FUZZY multicriteria algorithm proposed by Yager R., in GRASS GIS environment. The input required is the list of raster representing the criteria to be assessed in the multicriteria evaluation and the vector of linguistic modifiers to be assigned. Every single cell of the GRASS region is considered as one of the possible alternatives to evaluate and it is described with the value assumed for the same cell by the raster used as criteria. It is possible to get three different output files as the result of the intersection operator, the union operator and the ordered weighted averaging (OWA) operator.

r.mcda.electre

Wulticirtieria	decision anal	ysis based on ELECTR	E method	
Required	Optional	Command output	Manual	4 Þ×
[multiple] Input g	eographics cr	iteria in information sy	/stem:	(criteria, string)
[multiple] Criteria	weight(s) (w	1,w2,):		(weight, float)
concordance outp	out map:		(conc	ordance, string)
discordance outp	ut map:		(disc	ordance, string)
Chiudi ⊆ Chiudi ⊆ Close dialog o	Eerma Eerma	Bun	<u>C</u> opia	Ajuto
Enter parameters	for r.mcda.e	lectre (those in bold ty	/peface are r	equired)

It is the implementation of the ELECTRE multicriteria algorithm in GRASS GIS environment.

Input: the list of raster representing the criteria to be assessed in the multicriteria evaluation and the vector of weights to be assigned.

Alternatives: Every single cell of the GRASS region is considered as one of the possible alternatives to evaluate and it is described with the value assumed for the same cell by the raster used as criteria.

Output: There are two output files. One represents the spatial distribution of the concordance index, the other one of the discordance index. The optimal solution is the one presenting the maximum concordance value and the minimum discordance value at the same time.

r.rough set

Rough set based geographics knowledge						
Required 0	Optional	Command output	Manual	4 Þ ×		
[multiple] Input geog	graphics AT	TRIBUTES in informatio	on system:	(attributes, string)		
Strategies for gener Very fast	ating rules:	~		(strgy, string)		
Strategies for classi Classify1	fied map (c	onflict resolution)		(clssfy, string)		
Output information s	system file:			(outTXT, string)		
Output classified ma	ap:			(outMAP, string)		
Close dialog on f			<u>C</u> opia	Ajuto		
Enter parameters fo	or r.roughse	t (those in bold typefa	ce are require	ed)		

It is the implementation of the rough set theory in GRASS GIS environment. It requires the following input:

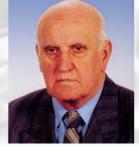
 the geographical attributes constituting the information system for the rough set analysis; they have to describe environmental, economic or social issues
 the theme in which areas with the issues to be studied are identified.

An information system is generated and the functions of version 2 of rough set library (RSL, ver. 2.0) are applied, following one of the decision strategies available with the option

The choice of the classification strategy, is necessary to generate a map based on the attributes and the decision rules. Implementing Dominace based Rough Set Approach (Greco, S., Matarazzo, B., Slowinski, R., 1999)

🛛 😣 📀 💿 r.mcda.roughset [Multi Criteria Deci	sion Analysis (MCDA)]
Generate a MCDA map from several criteria maps Approach.	s using Dominance Rough Set
Required Optional Command output	4 Þ ×
[multiple] Name of criteria raster maps: ABITAZIONI.cost@rough_set,INDICEDISP.gain@rough_	(criteria=name)
gain,cost:	(preferences=character)
cost,gain,cost	
Name of decision raster map: DEC@rough_set	(decision=name)
Output classified raster map: roughMap	(outputMap=string)
Name for output files (base for *.isf and *.rls files):	(outputTxt=name)
infosys	Browse
Chiudi Run	Сору
r.mcda.roughset criteria=ABITAZIONI.cost@rough_set	,INDICEDISP.gain@rough_set pre

Dominance-based Rough Set Approach (DRSA)


What type of Rough Set Approach?

 In the last decade, an extension of Classical Rough Set Theory permitting to deal with decision problems has been proposed, applied, and thoroughly investigated

Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. *European J. of Operational Research*, 129 (2001) no.1, 1-47

- It is called **Dominance-based Rough Set Approach (DRSA**)
- DRSA proved to be useful in many real world applications ranging from investment analysis to credit risk evaluation, from customer satisfaction analysis to technical and medical diagnoses

Classical Rough Set Approach (Z.Pawlak)

• The granules of indiscernible objects are used to approximate classes

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S3	medium	medium	medium	medium
S4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S8	bad	bad	medium	bad

• Lower approximation of class "good"

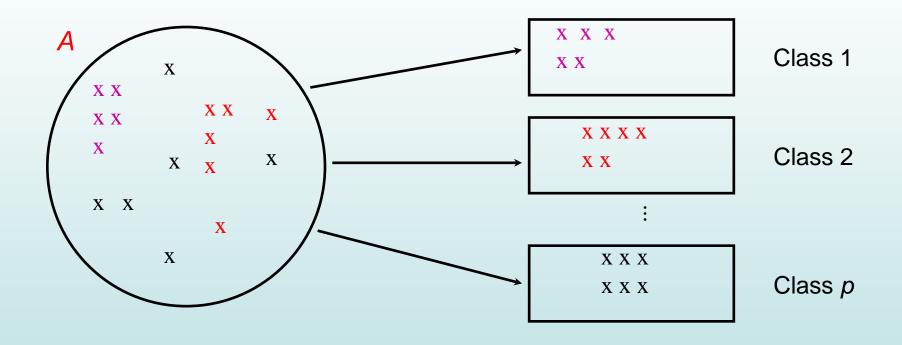
-ower Approximation

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S3	medium	medium	medium	medium
S4	medium	medium	medium	good
\$5	good	medium	good	good
\$ 6	good	good	good	good
S7	bad	bad	medium	bad
S8	bad	bad	medium	bad

• Lower and upper approximation of class "good"

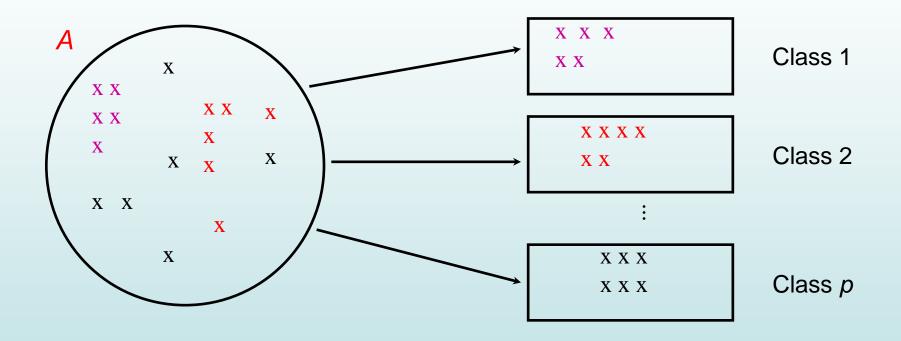
Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
9 3	medium	medium	medium	medium
S4	medium	medium	medium	good
95	good	medium	good	good
\$6	good	good	good	good
S7	bad	bad	medium	bad
S8	bad	bad	medium	bad
	S2 S3 S4 S5 S6 S7	S1goodS2mediumS3mediumS4mediumS5goodS6joodS7bad	S1goodmediumS2mediummedium\$3mediummedium\$4mediummedium\$5goodmedium\$6goodgood\$7badbad	S1goodmediumbadS2mediummediumbad\$3mediummediummedium\$4mediummediummedium\$6goodmediumgood\$6goodgoodgood\$7badmediummedium

Classical Rough Set Approach (Z.Pawlak)


- The information in the decision table can be represented by the following "if ..., then ..." decision rules
- 1) If Literature="good", then the student is good
- 2) If Mathematics="bad", then the student is bad
- 3) If Mathematics="good" and Literature="bad", then the student is bad
- 4) If Mathematics="medium" and Literature="bad", then the student is medium
- 5) If Physics="medium" and Literature="medium", then the student is medium or good

(\$7,50)	
	(s1)
(s2)	
(s3,s4)	

(s5,s6)


Classification in strict sense and ordinal classification (sorting)

Classification to preferentially non-ordered classes (classification in the strict sense)

Patients	Temperature	Dry-Cough	Headache	Muscle pain	Flu
1	normal	absent	absent	absent	absent
2	normal	absent	present	present	absent
3	subfeb.	absent	present	present	present
4	subfeb.	present	absent	absent	absent
5	subfeb.	present	absent	absent	present
6	high	absent	absent	absent	absent
7	high	present	absent	absent	absent
8	high	present	absent	absent	present
9	high	present	present	absent	present

Ordinal classification to preferentially ordered classes (sorting)

Class 1 > Class 2 > ... > Class p

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S3	medium	medium	medium	medium
S4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S8	bad	bad	medium	bad

Rough set approach and decision problems

- The only class of decision problems which can be dealt with Classical Rough Set Theory is classification in the strict sense
- This class is rather limited (even if it is practically the only class of decision problems considered within data mining and knowledge discovery!)
- Why classical rough set approach is not useful to deal with choice problems, sorting problems and ranking problems?
- Because Classical Rough Set Approach does not consider preferences

Why Classical Rough Set Approach has to be adapted to MCDM?

Classical rough set approach does not detect inconsistency w.r.t. dominance (Pareto principle)

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S3	medium	medium	medium	medium
S4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S8	bad	bad	medium	bad

Classical Rough Set Theory vs. Dominance-based Rough Set Theory from indiscernibility principle to dominance principle

Classical Rough Set Theory

Indiscernibility principle

If x and y are indiscernible with respect to all relevant attributes, then x should be classified to the same class as y

Dominace-based Rough Set Theory

Dominance principle

If x is at least as good as y with respect to all relevant **criteria**, then x should be classified at least as good as y

S.Greco, B.Matarazzo, R.Słowiński: Rough sets theory for multicriteria decision analysis. *European J. of Operational Research*, 129 (2001) no.1, 1-47

Rough Set approach to multiple-criteria sorting

• Set of decision rules in terms of {M,Ph,L} representing preferences:

If $L \succeq \text{good}$, then student $\succeq \text{good}$ {S5,S6}

If M \succeq medium & L \succeq medium, then student \succeq medium {S3,S4,S5,S6}

If M \succeq medium & L \preceq bad, then student is bad or medium {S1,S2}

If $M \prec bad$, then student $\prec bad$ {S7,S8}

If $L \leq bad$, then student $\leq medium$ {S1,S2,S7}

Greco, S., Matarazzo, B., Słowiński, R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. *European J. of Operational Research*, 158 (2004) no. 2, 271-292

Using DRSA rules as a decision model

• New student to be evaluated

Student	Mathematics	Physics	Literature
S9	Medium	Medium	Good

• Set of activated decision rules:

If $L \succeq \text{good}$, then student $\succeq \text{good}$	{S5,S6}
---	---------

If M \succeq medium & L \succeq medium, then student \succeq medium {S3,S4,S5,S6}

• Set of non-activated decision rules:

If M \succeq medium & L \preceq bad, then student is bad or medium {S1,S2}

If $M \leq bad$, then student $\leq bad$ {S7,S8}

If L \leq bad, then student \leq medium {S1,S2,S7}

Using DRSA rules as a decision model: relevant rules

• New student to be evaluated

Student	Mathematics	Physics	Literature
S9	Medium	Medium	Good

• Set of activated decision rules:

If $L \succeq \text{good}$, then student $\succeq \text{good}$	{S5,S6}
---	---------

If $M \succeq medium \& L \succeq medium$, then student $\succeq medium$ {S3,S4,S5,S6}

• Set of non-activated decision rules:

If M \succeq medium & L \leq bad, then student is bad or medium {S1,S2}

If $M \leq bad$, then student $\leq bad$	{S7,S8}
If L \leq bad, then student \leq medium	{S1,S2,S7}

Using DRSA rules as a decision model

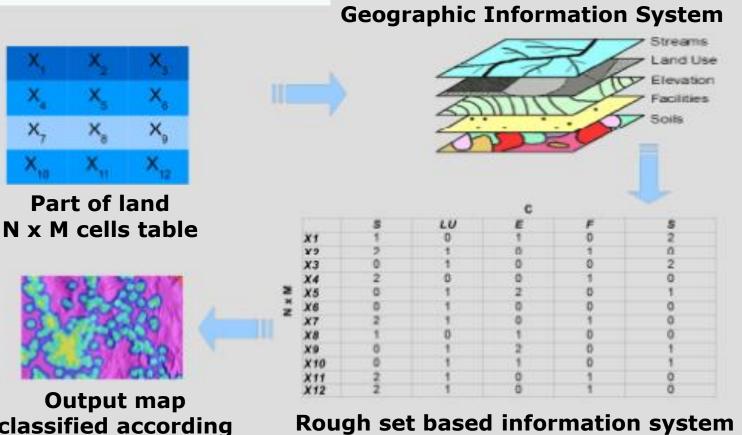
New student to be evaluated

Student	Mathematics	Physics	Literature
S9	Medium	Medium	Good

• Set of relevant decision rules:

If $L \succeq \text{good}$, then student $\succeq \text{good}$	{S5,S6}
If M \leq bad, then student \leq bad	{S7,S8}

Conclusion: S9 is a good student because he is good in Literature and he is not bad in Mathematics


- DRSA has a lot of good properties:
 - Transparence
 - Use of qualitative evaluations
 - Decision analysis based on ordinal properties only
 - Traceability
- DM gives preference information by answering easy questions, and obtains transparent feedback ("glass box") in a learning oriented perspective

DRSA – preference modeling by decision rules

- A set of (D₂ D₅ D₅)-rules induced from rough approximations represents a preference model of a Decision Maker
- Traditional preference models:
 - utility function (e.g. additive, multiplicative, associative, Choquet integral, Sugeno integral),
 - binary relation (e.g. outranking relation, fuzzy relation)
- Decision rule model is the most general model of preferences: a general utility function, or outranking relation exists <u>if and only if</u> there exists the decision rule model
- Greco, S., Matarazzo, B., Słowiński, R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. *European J. of Operational Research*, 158 (2004) no. 2, 271-292

r.mcda.roughset

The conceptual model

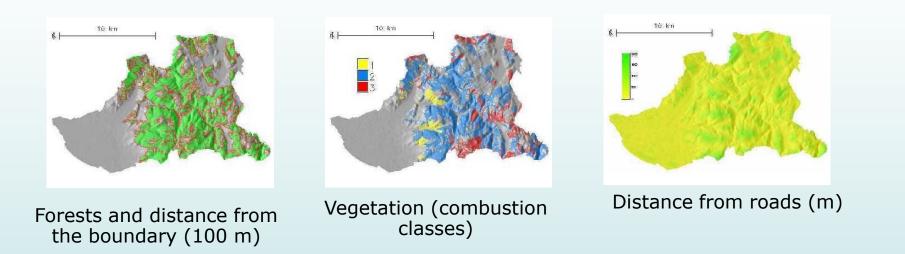
classified according to DRSA rules

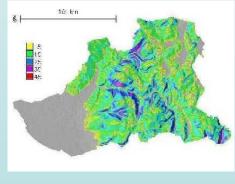
Input data:

- Name of criteria raster maps
- Preferences, in term of gain and cost
- Name of decision raster map
- Name of output classified raster map
- Name for output f txt files

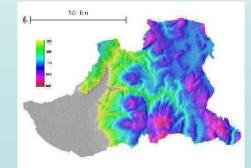
Output:

- 1. Graphic: raster map classifying the whole study area according to the rules extracted
- 2. Text file: containing all the rules "if... and... and... then"

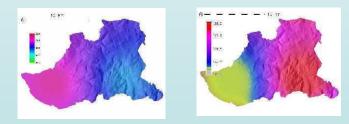

r.mcda.roughset applied to forest fire risk assessment


Forest fire risk assessment is suitable for experiencing the DRSA because some of the parameters certainty play an important role in the occurrence of the phenomenon, but there are others whose role is not clear and defined.

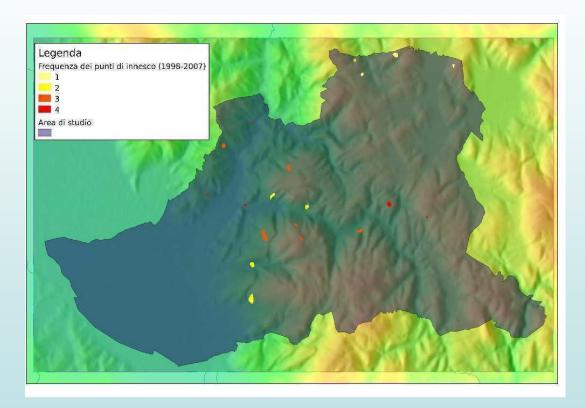
The dominance-based rough set approach allows to handle imprecise and vague information. It seems appropriate for classifying a land context in terms of risk of fire, given a plurality of thematic geographic data into a database.


The combination of the benefits arising from the DRSA with the potential of geographic information systems further extends the interest and possibilities of application for land use and environmental assessment and management.

The territorial information system



Slope (degree)

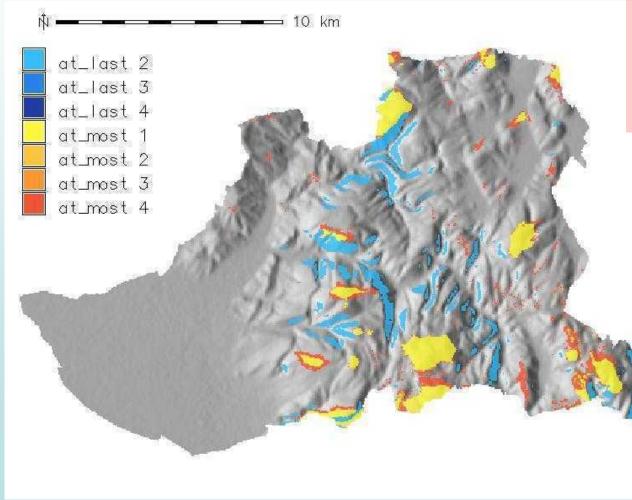


Altitude (m)

Climate parameters: summer rain (mm) and summer average temperature (*C)

The territorial information system

Exemplary case: areas for which the fire inception frequence is known from a 10 years observation period


Input parameters

r.mcda.roughset criteria=name[,name,...] *preferences*=character *decision*=name *outputMap*=string *outputTxt*=name.

Criterio geografico Pro	eference	Generate a MCDA map from several criteria maps using Dominance Rough Set Approach.			
		Required Optional Command output			
Vegetation (combustion classes)	cost	[multiple] Name of criteria raster maps: (criteria=name) @IncendiFoligno,buffer_viabilit_stradale@IncendiFoligno			
		gain,cost: (preferences=character)			
Slope	gain	gain,gain,cost,cost			
Altitude (m s.l.m.)	cost	Name of decision raster map: (decision=name) incendi_frq_mod@IncendiFoligno v			
Forests and distance from the boundary (100 m)	cost	Output classified raster map: (outputMap=string) incendi_rsk			
Distance from roads	cost	Name for output files (base for *.isf and *.rls files): (outputTxt=name) Incendi Browse			
Summer rain	cost				
Average summer temperature	gain	Chiudi Run Copy			
		Close dialog on finish			

'r.mcda.roughset criteria=vegetazione_combust@IncendiFoligno,slope_int@

Graphic outputs

Areas having "sure rules" have in the map different colours. Each rule is represented with a number indicating the alphanumeric id

Alphanumeric output: .rls file

The main alphanumeric output is a file with .rls extension, containing the description of the rules got from the module and used to draw the map The general syntax is: *if* [and] then ...

RULES:

```
[...]
4: (road_distance_ <= 0.000 ) & ( altitude <= 834.000 ) & ( buff_forest <= 1.000 )
& ( slope >= 23.000 )=> ( class at_least , 3 )
5: ( slope >= 28.000 )=> ( class at_least , 4 )
[...]
9: ( altitude >= 1063.000 ) & ( road_distance >= 335.000 )=> ( class at_most , 1 )
10: ( road_distance >= 873.000 ) & ( vegetation >= 3.000 ) & ( slope <=
18.000)=> ( class at_most , 1 )
[...]
32: ( slope <= 5.000 ) & ( altitude >= 1028.000 ) & ( vegetation >= 3.000 )=>
(class at_most , 2 )
35: ( slope <= 6.000 ) & ( altitude >= 1040.000 ) & ( vegetation >= 3.000 )=>
(class at_most , 2 )
[...]
```

Alphanumeric output: .rls file

How to read (e.g.: rule 4):

4: (road_distance <= 0.000) & (altitude <= 834.000) & (buff_forest <= 1.000) & (slope >= 23.000)=> (class at_last , 3)

Road_distance <= 0.000

&

quota <= 834.000

&

buff forest <= 1.000

The cell is close to a road

and

Altitude is <= 834 m

and

Land use is forest

& slope >= 23.000 =>

Class at last 3

and

Slope is >= 23 degrees

then

The cell is classified at least in forest fire risk class 3

MCDA is an useful approach in environmental and land assessment and evaluation processes.

Traditional numeric MCDA cannot manage the geographic dimension often useful to better understand and to find sound solutions for the assessment and evaluation problems. Instead, to manage the geographic dimension is the role of GIS.

The integration of the analytical capabilities of MCDA with the geographic data management of GIS allows an improvement of the analysis, assessment and evaluation of environmental, social and economic aspects.

The MCDA suite is available in the **GRASS addons** repository (<u>http://trac.osgeo.org/grass/browser/grass-addons/raster/mcda</u>) with GNU GPL license. All modules are actively being tested using several case studies.

The final product of the work consists of a "suite" that can efficiently integrate the main methods of MCDA in a full GIS GRASS environment.

- DRSA has a lot of good properties in this context:
 - Transparence
 - Use of qualitative evaluations
 - Decision analysis based on ordinal properties only
 - Traceability (it means that from score we can go back to rules and from rules to objects in the data set.
- DM gives preference information by answering easy questions, and obtains transparent feedback ("glass box") in a learning oriented perspective

This document is licensed under the Attribution 2.5 Italy license, available at http://creativecommons.org/licenses/by/2.5/it/.