

Comparison of Decisional Maps

V. Brison, M. Pirlot

UMONS - Faculté Polytechnique
October 6th, 2011

PLAN

(1) Introduction

- Motivation
- Example
(2) Models
- Case of one decisional map
- Case of one decisional map and one "attribute" map
- Case of one decisional map and several "attribute" maps
(3) Conclusion and Perspectives

Introduction

There are many interesting decision problems related with GIS

- Suitability for housing (Joerin, 1997)
- Railway corridor (Mousseau and Chakhar, 2008)
- Risk of degradation of a region (Metchebon, 2010)
\Rightarrow map partitioned in geographic units (g.u.)
each g.u. assessed on an ordinal scale
$=$ decisional map

After some time, the map has evolved

Example : Loulouka

Study of Loulouka's basin in Burkina Faso

Map representing the response to the risk of degradation
Geographic units : 229 squares $500 \mathrm{~m} \times 500 \mathrm{~m}$
Scale for response: 4 categories :
adequate, moderately adequate, weakly adequate, not adequate

Example of evolution

Figure 1 - Previous state

Figure 2 - New state

MODEL 1 :

Case of one decisional map

Model 1

Hypothesis

We assume that a map A is equivalent to the distribution of g.u. in categories:

$$
x(A)=\left(x_{1}(A), x_{2}(A), \ldots, x_{n}(A)\right)
$$

Comparing maps is equivalent to comparing probability distributions

Model : EU (expected utility)

$$
A \succsim B \Longleftrightarrow \sum_{i} x_{i}(A) u_{i} \geq \sum_{i} x_{i}(B) u_{i}
$$

where u_{i} is a value associated with the map in which all g.u. belong to category i

Model 1

Characterization: Adaptating Jensen's axioms (Fishburn 82)

- The set of maps is a mixture set : for $\lambda \in[0,1]$,

$$
\lambda A \oplus(1-\lambda) B
$$

is a map in which a portion λ has the same distribution as A and a portion $1-\lambda$ has the same distribution as B

- $A=x_{1}(A) e_{1} \oplus \ldots \oplus x_{i}(A) e_{i} \oplus \ldots \oplus x_{n}(A) e_{n}$ where e_{i} is a map with all g.u. in category i
- \succsim is the DM's preference on the set of maps
- if this preference satisfies some axioms then it has a linear EU representation

Model 1

Axioms

$A_{1}: \succsim$ is a weak order on the set of maps
A_{2} : for any maps A, B, C and $\left.\left.\forall \lambda \in\right] 0,1\right]$

$$
A \succ B \Rightarrow \lambda A \oplus(1-\lambda) C \succ \lambda B \oplus(1-\lambda) C
$$

$A_{3}:$ [Continuity] $A \succ B$ and $B \succ C$ imply
there exists a number $\alpha \in] 0,1[$ such that $\alpha A \oplus(1-\alpha) C \succ B$ there exists a number $\beta \in] 0,1[$ such that $B \succ \beta A \oplus(1-\beta) C$

Model 1

Representation theorem

There is a unique linear utility function u representing \succsim; i.e.

$$
A \succsim B \Longleftrightarrow u(A) \geq u(B)
$$

Linear: $u(\lambda A \oplus(1-\lambda) B)=\lambda u(A)+(1-\lambda) u(B)$
Unique: if u^{\prime} represents \succsim then there are $a>0$ and b such that $u^{\prime}=a u+b$

Model 1

Representation theorem

There is a unique linear utility function u representing \succsim; i.e.

$$
A \succsim B \Longleftrightarrow u(A) \geq u(B)
$$

Linear : $u(\lambda A \oplus(1-\lambda) B)=\lambda u(A)+(1-\lambda) u(B)$
Unique: if u^{\prime} represents \succsim then there are $a>0$ and b such that $u^{\prime}=a u+b$

Benefits

$$
\begin{gathered}
A=x_{1}(A) e_{1} \oplus \cdots \oplus x_{i}(A) e_{i} \oplus \cdots \oplus x_{n}(A) e_{n} \\
u(A)=x_{1}(A) u\left(e_{1}\right)+\cdots+x_{i}(A) u\left(e_{i}\right)+\cdots+x_{n}(A) u\left(e_{n}\right)
\end{gathered}
$$

We only have to determine $u\left(e_{i}\right):=u_{i}$ for $i=1, \ldots, n$

Model 1

Additional axiom

Due to the ordering of the categories, the DM's preference surely satisfies:

$$
e_{1} \succ e_{2} \succ \cdots \succ e_{n}
$$

which results in :

$$
u_{1}>u_{2}>\cdots>u_{n}
$$

Using the two degrees of freedom, we set

$$
u_{1}=100 \text { and } u_{n}=0
$$

Elicitation

Inspired by comparison of lotteries

Remarks

Model 1 only takes into account the proportion of g.u. in the categories \rightarrow a bit disappointing : geographic aspects neglected

One geographic aspect : contiguity

Same distribution

Grouped

Scattered

Remarks

Model 1 only takes into account the proportion of g.u. in the categories \rightarrow a bit disappointing : geographic aspects neglected

One geographic aspect : contiguity
\rightarrow model based on the Choquet's integral w.r.t. a 2-additive capacity

Remarks

Model 1 only takes into account the proportion of g.u. in the categories \rightarrow a bit disappointing : geographic aspects neglected

One geographic aspect : contiguity
\rightarrow model based on the Choquet's integral w.r.t. a 2-additive capacity
Other geographic aspects : proximity of a village, of a road, of a watercourse, ...
\rightarrow attribute map(s)

MODEL 2 :

Case of one decisional map and one attribute map

Fictitious attribute map

Model 2

We consider :

- a decisional map A
- a fixed attribute map G partitionned as A

We note (A, G) :

- a map partitionned in g.u.
- each g.u. assessed on 2 scales : the same as A and the same as G

Model 2

Hypothesis

We assume that a map (A, G) is equivalent to the distribution of g.u. in categories:

$$
\begin{aligned}
& x(A, G) \\
& \quad=\left(\left(x_{11}(A, G), \ldots, x_{n 1}(A, G)\right), \ldots,\left(x_{1 m}(A, G), \ldots, x_{n m}(A, G)\right)\right) \\
& \quad:=\left(x_{1}(A, G), \ldots, x_{m}(A, G)\right)
\end{aligned}
$$

Comparing maps is equivalent to comparing vectors of probability distributions

Example of partial map

moderately far

Example of distribution in categories for a partial map

■ moderately adequate
we ak ly adequate
not adequate

Preferences on partial maps

\square moderately adequate
\square we ak ly adequat
— not adequate

Model 2

Notation and definitions

- For $j \in\{1, \ldots, m\}$ we write X_{j} the set of all possible distributions in categories of a partial map
- For $j \in\{1, \ldots, m\}$ we write $X_{-j}=\prod_{\substack{k=1 \\ k \neq j}}^{m} X_{k}$
- For $x_{j} \in X_{j}$ and $a_{-j} \in X_{-j}$, we write

$$
\left(x_{j}, a_{-j}\right)=\left(a_{1}, \ldots, a_{j-1}, x_{j}, a_{j+1}, \ldots, a_{m}\right)
$$

- We define a preference relation \succsim_{j} on X_{j} as follows:

$$
\forall x_{j}, y_{j} \in X_{j}, x_{j} \succsim_{j} y_{j} \Longleftrightarrow \forall a_{-j} \in X_{-j}\left(x_{j}, a_{-j}\right) \succsim\left(y_{j}, a_{-j}\right)
$$

Model 2

Notations and definitions (following)

- Each set X_{j} is a mixture set : for $\lambda \in[0,1]$

$$
\lambda x_{j} \oplus(1-\lambda) y_{j}
$$

is a partial map in which a portion λ has the same distribution as x_{j}, the other portion $1-\lambda$ having the same distribution as y_{j}

Model 2

Axioms

$B_{1}: \succsim$ is a weak order
$B_{2}: \forall j \in\{1, \ldots, m\} \forall x_{j}, y_{j}, z_{j} \in X_{j} \forall a_{-j} \in X_{-j}$ and $\left.\left.\forall \lambda \in\right] 0,1\right]$

$$
\begin{aligned}
& {\left[\left(x_{j}, a_{-j}\right) \succ\left(y_{j}, a_{-j}\right)\right] \Rightarrow} \\
& \quad\left[\lambda\left(x_{j}, a_{-j}\right) \oplus(1-\lambda)\left(z_{j}, a_{-j}\right) \succ \lambda\left(y_{j}, a_{-j}\right) \oplus(1-\lambda)\left(z_{j}, a_{-j}\right)\right]
\end{aligned}
$$

$B_{3}: \forall j \in\{1, \ldots, m\} \forall x_{j}, y_{j}, z_{j} \in X_{j} \forall a_{-j} \in X_{-j}$

$$
\begin{array}{r}
\left.\left[\left(x_{j}, a_{-j}\right) \succ\left(y_{j}, a_{-j}\right) \succ\left(z_{j}, a_{-j}\right)\right] \Rightarrow \exists \alpha, \beta \in\right] 0,1[: \\
\alpha\left(x_{j}, a_{-j}\right) \oplus(1-\alpha)\left(z_{j}, a_{-j}\right) \succ\left(y_{j}, a_{-j}\right)
\end{array}
$$

and

$$
\left(y_{j}, a_{-j}\right) \succ \beta\left(x_{j}, a_{-j}\right) \oplus(1-\beta)\left(z_{j}, a_{-j}\right)
$$

Model 2

Axioms (following)

B_{4} [Essentiality]: $\forall j \in\{1, \ldots, m\} \exists x_{j}, y_{j} \in X_{j} \exists a_{-j} \in X_{-j}:$

$$
\left(x_{j}, a_{-j}\right) \succ\left(y_{j}, a_{-j}\right)
$$

B_{5} [Independence]: $\forall j \in\{1, \ldots, m\} \forall x_{j}, y_{j} \in X_{j} \forall a_{-j}, b_{-j} \in X_{-j}$

$$
\left(x_{j}, a_{-j}\right) \succsim\left(y_{j}, a_{-j}\right) \Rightarrow\left(x_{j}, b_{-j}\right) \succsim\left(y_{j}, b_{-j}\right)
$$

B_{6} [Restricted solvability] :

$$
\begin{aligned}
& \forall j \in\{1, \ldots, m\} \forall x_{j}, z_{j} \in X_{j} \forall a_{-j} \in X_{-j} \forall y \in X \\
& \quad\left(x_{j}, a_{-j}\right) \succsim y \succsim\left(z_{j}, a_{-j}\right) \Rightarrow \exists w_{j} \in X_{j}: y \sim\left(w_{j}, a_{-j}\right)
\end{aligned}
$$

B_{7} [Archimedean] : $\forall j \in\{1, \ldots, m\}$, if a standard sequence on X_{j} is bounded, then it is finite

Model 2

Representation theorem

- \succsim is reprented by an additive value function

$$
(A, G) \succsim(B, G) \Longleftrightarrow \sum_{j=1}^{m} u_{j}\left(x_{j}(A, G)\right) \geq \sum_{j=1}^{m} u_{j}\left(x_{j}(B, G)\right)
$$

- \succsim_{j} is represented by a linear EU function

$$
x_{j}(A, G)=x_{1 j}(A, G) e_{1 j} \oplus \cdots \oplus x_{n j}(A, G) e_{n j}
$$

where $e_{i j}$ is a partial map where all g.u. are in i and j

$$
u_{j}\left(x_{j}(A, G)\right)=\sum_{i=1}^{n} x_{i j}(A, G) u_{j}\left(e_{i j}\right)
$$

Model 2

Representation theorem

$$
\begin{aligned}
& (A, G) \succsim(B, G) \Longleftrightarrow \\
& \quad \sum_{j} \sum_{i} x_{i j}(A, G) u_{j}\left(e_{i j}\right) \geq \sum_{j} \sum_{i} x_{i j}(B, G) u_{j}\left(e_{i j}\right)
\end{aligned}
$$

We have to determine $u_{j}\left(e_{i j}\right)$ for $i=1, \ldots, n$ and $j=1, \ldots, m$

Model 2

Additional axiom

Due to the ordering of the categories, the DM's preference surely satisfies, for any j :

$$
e_{1 j} \succ e_{2 j} \succ \cdots \succ e_{n j}
$$

which results in :

$$
u_{j}\left(e_{1 j}\right) \succ u_{j}\left(e_{2 j}\right) \succ \cdots \succ u_{j}\left(e_{n j}\right)
$$

Using the two degrees of freedom, we set

$$
u_{j}\left(e_{1 j}\right)=100 \text { and } u_{j}\left(e_{n j}\right)=0
$$

Elicitation

Inspired by comparison of lotteries

${ }_{1-p} u_{j}\left(e_{n_{j}}\right)$

MODEL 3 :

Case of one decisional map and several attribute maps

Idea : create a unique attribute map

- each g.u. assessed on $I+1$ scales (if $/$ attribute maps)

Idea : create a unique attribute map

- each g.u. assessed on $I+1$ scales (if $/$ attribute maps)

Model 3

Model : EU (expected utility)

$$
\begin{aligned}
& \left(A, G_{1}, \ldots, G_{l}\right) \succsim\left(B, G_{1}, \ldots, G_{l}\right) \Longleftrightarrow \\
& \quad \sum_{j_{1}} \cdots \sum_{j_{l}} \sum_{i} x_{i, j_{1}, \ldots, j_{l}}\left(A, G_{1}, \ldots, G_{l}\right) u_{j_{1}, \ldots, j_{l}}\left(e_{i, j_{1}, \ldots, j_{l}}\right) \\
& \geq \sum_{j_{1}} \cdots \sum_{j_{l}} \sum_{i} x_{i, j_{1}, \ldots, j_{l}}\left(B, G_{1}, \ldots, G_{l}\right) u_{j_{1}, \ldots, j_{l}}\left(e_{i, j_{1}, \ldots, j_{l}}\right)
\end{aligned}
$$

where $u_{j_{1}, \ldots, j_{l}}\left(e_{i, j_{1}, \ldots, j_{l}}\right)$ is a value associated with the map in which all g.u. belong to category i and characteristic j_{k} on $G_{k}, k=1, \ldots, l$

Conclusion

Emphasize the usefulness of characterizations \rightarrow elicitation Much work still to be done
For instance :

- implement a decision deck tool for questioning the DM in terms of histograms comparisons or maps comparisons
- include contiguity in models 2 and 3
- reduce the number of parameters to be elicited \rightarrow other characterization
- outranking methods

