

Agro-environmental risks: from the assessment with a spatialised multicriteria modelling on a small territory, to the use of remote sensing on his larger covering watershed

Francis MACARY, Juscelino ALMEIDA-DIAS, Odile LECCIA, José-Miguel SANCHEZ-PEREZ

74th Meeting of the European Working Group MCDA
October 6 & 7, 2011 in Yverdon

1- Introduction and objectives

- ✓ Many water systems are degraded with human activities, including intensive agriculture (e.g. nitrates, pesticides)
 - => many problems with the <u>pumping stations for drinking water!</u>
- ✓ European Union adopted the Water Framework Directive 2000/60/EC.
- Aim => To maintain or restore the good ecological status (physico-chemical and biological) of hydrosystems in 2015.
- ✓In France, the last Law on water and aquatic environments (2006) has renovated the whole of water policy.
- => Now, managers like those in water agencies, must get not only means, but results, in restoring the quality of water!

1- Introduction

1- Introduction and objectives

- ✓ They decided to protect first the <u>pumping zones</u>.
- ✓ Farmers receive subsidies of the Commun Agricultural Policy (EU), but with conditions to improve their practices!
 - => Reduction negatives impacts of agricultural practices on the environment, especially on water.
- √ The apply of public policies needs first an assessment of environmental risks => choice of several methods at different spatial scales.
- ✓ We tried to address this issue with 2 methods: × a MCDA method coupled with a GIS in a small watershed of intensive agriculture.

* a spatial method coupling remote sensing & GIS in the large watershed including.

5- Results

2- Location of the study site

1- Introduction **2-Location**

3- Context

4- Method

5- Results

6- Conclusion

n° 4

3- General context of the project

- ✓ Local context: atlantic climate & geological substratum essentially impermeable = very favorable for transfers of contaminants into the surface waters.
- ✓ <u>Intensification</u> of the <u>agricultural practices</u> => <u>Degradation of the</u> surface water quality which is collected for human drinking! (crops successions very short, higher inputs like nitrogen, pesticides => to obtain best yields.)
- ✓ Protection of waters against contaminants is the priority!
- ✓ E.g. for the Save watershed, in 2008 => Water agency decided to create a protection area around the pumping zone of the L'Isle Jourdain town (20.000 hab.)
- √ The small watershed of Auradé is situated at 5km from it.

4- Global conceptual model

Issue => Assessment of agro-environmental risks at different spatial scaling

5- Results 6- (

4- Two methods: MCDA method & PIXAL method

4.1- MCDA method: terminology

- An action = representation of the element which contributes to the decision => 1 of the 85 agricultural parcels of land into Aurade watershed
- A criterion = <u>factor of judgment</u> on the basis of which we measure and estimate the performances of the parcels for the risk of surface water contamination.
- Multicriteria evaluation = measure of the parcels performances with regard to <u>6 criteria</u>, using the Electre Tri-C method.
- Assignment procedure of the parcels into 5 categories of risk level:

4- Method

=> Very high / High / Intermediate / Low / Very low or no risk.

4- Method 1: MCDA & GIS

1- Introduction

2-Location

3- Context

4- Method

5- Results

6- Conclusion

Method 2- Pixal (step 1)

- Choice of a RSO (Reference Spatial Objet)
- > Homogenus: Adapted to scaling change
- > Inducing the best precision

scale

The pixel

Method 2- Pixal (step 2) Contamination risk (pixel scale) of values obtained / watershed Aggregation Surface of watershed (Wd) **Elementary Intermediate** Large Wd Wd Wd n° 13 1- Introduction 2-Location 5- Results 6- Conclusion 3- Context 4- Method

<u>Auradé</u>-Cr3 <u>Connectivity</u> of parcels to the streams (e.g. Qualitative criterion for

<u>Auradé</u>-Cr3 <u>Connectivity</u> of parcels to the streams (Qualitative criterion of MCDA)

The connectivity facilitates the transfer of contaminants from the parcels to the streams. MCDA can assess quality of connexion!

Connectivity type	Description	Scores MCDA	
Very high	Edge of the streams with some drains	9	
	Edge of the streams		
High	Edge of the streams, but partially	6	
Intermediate	Talwegs, ditchs	5	
Weak	Ways, roads	3	
Very weak	No, or very weak connectivity	1	

Save: Connectivity of pixels to the streams (=> quantitative scores)

2-Location

3- Context

1- Introduction

4- Method 5- Results 6- Conclusion n° 16

Auradé-MCDA-Cr4-Vegetative filter strips (VFS): BEPs

They limit the transfer of contaminants into the steams

Width	Quality	Protection level	Score MCDA
≤ 3 m	Bad	Bad Very weak	
3 3 111	Good	very weak	14
]3 ; 5 m [Bad	Weak	12
]3 , 3 III [Good	vveak	11
[5 · 7 m [Bad	Avoraga	9
[5 ; 7 m [Good	Average	8
[7 0 m [Bad	High	6
[7 – 9 m [Good	High	5
≥ 9 m	Bad	\/ony bigh	3
2 9 111	Good	Very high	2
No interest	Parcel, far fro	0	

Bad VFS

Impossible to implement in the PIXAL method!

Auradé-MCDA-Cr5 - Riparian zones : BEPs

They limit also the transfer of contaminants into the steams

Importance of riparian zones	Description	Score MCDA
[0 -10 [%	No tree	10
[10 -25 [%	Weak protection, just some trees	9
[25 -50 [%	Passable protection	7
[50 -75 [%	Average Protection	5
[75 -100 [%	High protection	3
100 % boisée	Very high protection	2
No interest	Parcel, far from the stream	0

Riparian zone = 100%

Riparian zone < 25 %

Impossible to implement in the PIXAL method!

Auradé-Cr6 - Agriculture pressure in Auradé Wd

Land use 2009 into the arable parcels

Auradé-MCDA-Cr6 - Agriculture pressure : Nitrogen

When nitrogen inputs are high => Transferts risks increase!

=> Risks are less important with inputs divided

Number of Nitrogen inputs	Correction of quantities		
1	100% Qtes		
2	85% Qtes		
3	75% Qtes		
4 & more	70% Qtes		

Category MCDA	Risk level	Inputs Value (Kg N / ha)
Category 1	Very high	130
Category 2	High	100
Category 3	Intermediate	70
Category 4	Category 4 Low 40	
Category 5	Very low	20

4- Method

5- Results

6- Conclusion

Weighting of the 6 criteria in MCDA method

\	Criteria	Slopes	Soils	Connexion	Filter strips	Riparian zones	Nitrogen pressure
	Criteria	CR1	CR2	CR3	CR4	CR5	CR6
•	Weights (%)	18	6	23	13	10	30

" The weights of the criteria were determined by using the S.R.F. software (Simos-Roy-Figueira), with agronomists experts.

```
EXECUTE: IN CONTROL OF THE PROPERTY OF THE 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 => 47% of the weights sum
```

After testing by comparing the assignments obtained by expert, we chose the <u>credibility level</u> $\lambda = 0.70$ used in Electre Tri-C method.

5- Results 6- Conclusion

Weighting of the PIXAL method

	Vulnerability			BEPs		Pressure
Criteria	Slopes CR1	Soils CR2	Connexion CR3	Vegetable Filter strips CR4	Riparian zones CR5	Nitrogen pressure CR6
Weights (%) of MCDA	18	6	23	13	10	30
Weights (%) of PIXAL method	38	15	47			100
PIXAL method => Weight =100				×	Wt =100	

In PIXAL method, weights are applied from those of MCDA, only for vulnerability criteria \Rightarrow Risk = V. \times P.

Relations between the methods: MCDA & PIXAL

- MCDA applied in a small territory gives information for scoring indicators used in a large territory:
 - The slope classes have been modified to PIXAL.
 - Observation of the **nature of soils** in small watersheds was useful for scoring pedology in Save Wd.
 - Connectivity has been appreciated in small Wd. In large Wd, scores only take account of distances. Buffers have been made according local characteristics of connections.
- Scores of inputs applied to Save Wd have been identified on small local Wd.
- ☐ Weighting of criteria applied in MCDA have been extrapoled for vulnerability in PIXAL method.

5- Results: Auradé Wd with effects of BEPs

Cemagref Bordeaux, UR ADBX, 2010

Sources

Sources : IGN, Auradé farmers association

5- Results: Save - Weighting of vulnerability

6- Conclusion

- ✓ The MCDA (Electre Tri-C method) coupled with the GIS allows to assess zoning of agro-environmental risks in small watersheds.
- ▼Taking into account qualitative criteria, the MCDA method is able to show the interest of BEPs for limiting pollutants transfers.
- ✓ MCDA contributes to improve scores for other methods (like) PIXAL) applied at different spatial scales. BUT it cannot be implemented in a large territory like Save Wd!
- ✓ Also different methods are useful & necessary: this study shows how they can be complementary.
- ✓ Coupling of these methods at different scales => an interesting. decision aid for agricultural and environmental managers!

THANK YOU FOR YOUR ATTENTION

